兵器等专场
工程热物理
2014年04月02日

  一、引言

  工程热物理与能源利用学科是一门研究能量和物质在转化、传递及其利用过程中基本规律和技术理论的应用基础学科,是节能减排的主要基础学科。

  第三次工业革命引发的能源生产和消费方式变革,给工程热物理学科的发展带来新的机遇与挑战。为落实中国科协关于学科发展战略研究工作的有关部署,制定我国工程热物理与能源利用学科的发展战略,从学科发展和国家重大需求的战略层面出发,重新审视工程热物理学科的发展,建立能源、资源和环境一体化的可持续能源体系,使能源的发展与资源的开发利用相协调,是我国工程热物理学科的研究前沿。并且,还通过对国内外学科发展动态的比较分析,凝练工程热物理学科的前沿增长点。

  二、本学科近年来最新研究进展

  (一)节能原理与科学用能

  科学用能从能的梯级利用、清洁生产、资源再循环等基本科学原理出发,寻求用能系统的合理配置,深入研究用能过程中物质与能量转化的规律以及它们的应用,达到提高能源利用率和减少污染,最终减少能源消耗的目的。我国学者拓展能的梯级利用原理,基于燃料化学能释放新机理的揭示,阐明了化学能与物理能的综合梯级利用原理,从而将能量利用在热能领域的卡诺循环原理拓展到燃料化学能领域的梯级利用,能够大幅度提高了化石燃料的利用水平。近年来,针对可再生能源与化石燃料多能源互补、电冷热等多产品输出的集成能源系统,开展不同形式能的品位表征,已取得初步成果。开展了微/纳尺度热传递机理、复杂结构与超常条件下热传递规律、热传递过程优化及调控等热传递基础问题研究,建立了传热过程优化的最小热阻原理,提出了描述物体换热能力的新物理量火积(Entransy)等新概念,为实现换热节能奠定了理论基础和方法指导。

  (二)化石燃料的清洁利用

  深入研究了洁净煤发电技术,围绕燃煤联合循环(CFCC)开展工作,其中整体煤气化联合循环(IGCC)已有建成一批示范工程并试运成功,验证了其技术上可行性,使IGCC从技术验证阶段跨入商业应用阶段。开拓了化工-动力多联产系统,即通过系统集成把化工生产过程和动力系统有机地耦合在一起,在完成发电、供热等能量转换利用功能的同时,生产替代燃料或化工产品,从而同时满足能源、化工以及环境等多功能、多目标综合的能源利用系统;探索了PM2.5的形成与控制机理,研究指出煤中矿物质是燃煤排放颗粒物的主要来源,柴油机是移动源碳质细颗粒物的主要来源。

  (三)先进动力技术研究

  1.燃气轮机

  通过先进燃气轮机项目的实施,系统地建设了测量技术先进的机理性实验平台,开展了燃气轮机相关基础研究,获得了一批基础实验研究数据,在多级轴流压气机、燃烧室和空气冷却透平的内部流动,以及燃气轮机设计理论等方面解决了大批关键科学问题,缩短了与国际先进水平的差距。这些研究包括:(1)压气机。发展高性能、高压比压气机,开展压气机的非定常流动研究;(2)燃烧室。目的是实现高效、稳定和低排放燃烧,同时开展多燃料的适应性研究;(3)透平。开展了高负荷跨音速透平的研究,尤其是高温升发动机一级透平叶片的冷却和结构优化设计;(4)二次空气系统。这方面工作还须加强,目前多以航空发动机的二次空气系统为主,重型燃气轮机典型单元的基础研究和基础数据库严重不足。

  2.内燃机

  内燃机工业是实现全社会节约石油的基础和节能减排的重要环节,加快推进节能减排,是当前内燃机工业面临的一项艰巨而紧迫的任务,对保障我国石油能源安全、实现节能减排目标意义重大。这方面的研究包括:(1)均质压燃技术。均质压燃发动机的研究已从最初的柴油、汽油燃料扩展到天然气、二甲醚、醇类燃料和混合燃料等;(2)燃烧方式。分缸工作模式克服了均质压燃混合气准备的困难,不仅可以实现全负荷运行,而且可以在一台发动机上运行不同的燃料,实现多元燃料燃烧。

  (四)可再生能源

  我国太阳能、风能、生物质能资源丰富,具备大规模开发的有利条件。在风能研究方面,目前我国风力机主要形式是水平轴风力机。在水平轴风力机的研制和开发过程中,还有许多基本理论问题没有解决,其中最重要也是最关键的问题有两个,一是风轮的气动设计,二是风力机的控制。另外,在太阳能热发电关键技术研究方面,开展了MW级塔式太阳能热发电系统工程示范,并对槽式和塔式太阳能热发电系统的聚光与集热技术,高吸收低辐射的吸收器,熔融盐、导热油、陶瓷颗粒、水\水蒸气、液态金属、石英砂等传热和储热介质,以及系统集成等方面取得了新的进展。

  (五)温室气体控制战略

  能源动力系统是CO2排放的主要来源,针对燃煤火电系统降低大气中温室气体浓度的途径开展研究,指出通过节能增效提高能源利用率,降低CO2排放强度;通过调整能源结构,发展绿色替代能源减少碳排放,以及通过CO2捕集与封存(CCS)技术,实现直接碳减排。在能源动力系统CO2分离与捕集的能耗最小化原理等基础科学问题研究方面取得了较大进展。

  三、本学科国内外进展比较

  (一)国内外发展趋势

  能源和环境问题在世界各国受到高度重视,特别是发达国家,将能源问题提高到国家安全和解决气候变化问题的高度。许多发达国家在完善提高能源效率法律框架、依靠科技创新等方面积累了丰富的经验。这些国家作法的共同特征是:将能源效率作为国家能源政策的基本工具;在法律层面上制定节能的量化目标;为推广能效措施提供资金与组织结构上的支持;发展各类综合性能效项目。

  发达国家近年来能源科技投入稳步增加,可再生能源研发投入持续增加。能源领域中的CO2减排成为气候变化研究领域的热点之一。

  (二)学科优势与差距分析

  1.工程热力学与能源利用分学科

  作为近年来发展迅速的分布式能源和温室气体控制两个方向上,我国与世界先进水平的差距正在缩小。开展了多能源互补、能的综合梯级利用,以及分布式能源系统理论研究,提高分布式能源系统性能的潜力。在温室气体控制方面,提出了燃料源头捕集CO2原理,这一原理打破传统分离思路,强调在CO2生成的源头,亦即化学能的释放、转换与利用过程中寻找低能耗,甚至无能耗分离CO2的突破口。在温室气体减排的技术路线研究方面,认为欧美等发达国家提出的均不适合我国以煤为主、能耗总量大的基本国情,正在研究提出适合我国国情的新的温室气体减排路线。

  2.热机气动热力学与流体机械分学科

  在燃气轮机内流气动热力学方面进行了卓有成效的工作。在涡轮喷水推进理论与技术研发方面,研究成果已在国内外战斗舰艇、军辅船和民船上全面使用;对喷水推进器部件、推进系统以及与船体集成在一起的“船-泵”系统流场进行深入研究;海上发电是近年来国际风力发电产业发展的新领域,海上风力发电风力机及系统技术研究是我国近年来气动与流体机械的研究热点。

  3.传热传质分学科

  在远场辐射领域,高温介质与及弥散系统的非平衡辐射特性研究,特别是高温等离子体微观能量输运机制及其辐射特性、高温粒子及团聚物辐射的微观机制和规律的研究已成为国际上的一个热点问题,形成了局部学科优势,缩小了国际先进水平的差距。

  4.燃烧学分学科

  燃烧学在燃料的高效、稳定和清洁利用以及多燃料适应性等方面进行了卓有成效的工作。与此同时,近年来实施了973项目“燃烧源可吸入颗粒物形成与控制技术基础研究”,针对我国特有的能源消费结构,集中开展了PM10形成与控制机理的研究,目前更是关注脱除难度更高、危害性更大的细颗粒物PM2.5,这方面研究已于国际先进水平接轨。

  5.多相流分学科

  除了传统的多相流理论和实验研究外,近年来在先进及新型反应堆热工水力特性的研究方面建立了超临界水堆与快堆结合的新型堆(超临界快堆)的堆芯物理热工耦合分析方法,并研制了相应的计算软件,在此基础上通过优化设计提出了压力管式超临界水堆堆芯方案。从机理上揭示了影响超临界快堆空泡反应性的根本因素,并给出了克服这一困难的具体办法,为超临界水冷快堆的研究扫清了一种突出的障碍。

  从总体上看,尽管我国在化石燃料能量释放新机理、新原理发动机等方面做出了国际领先的成果,但我国工程热物理学科研究水平与世界先进水平还有较大差距,主要体现在技术开发落后于理论研究,实验设备、测试手段落后,温室气体控制等能源、环境交叉领域基础理论和关键技术研究薄弱。

  四、本学科发展趋势和展望

  我国能源科学发展的指导思想是:从支撑国家可持续发展的高度出发,紧密结合我国能源资源特点和需求,关注全球气候变化,立足能源科学与能源技术的学科基础,丰富和发展能源科学的内涵,加强基础研究与人才培养,构筑面向未来的能源科学学科体系,形成布局合理的基础研究队伍,为我国社会、经济、环境的和谐发展提供能源科学技术的支撑。

  我国能源科学技术发展的总体目标是:到2020年,突破能源科学与技术中的若干基础科学问题和关键技术,建立一支高水平的研究队伍,使我国能源科技自主创新能力显著增强,形成比较完善的能源科学体系。

  为实现能源科学的发展目标,应该将系统布局和重点发展有效结合,重点发展领域的遴选应该遵循以下原则:

  (1)加强基础研究。离开了基础科学的发展,就不可能有积累有创新,也就不可能改变被动跟踪的技术现状。只有加强基础研究和应用基础研究,才能构筑强大的学科基础,增强创新能力。

  (2)持续支持创新性高风险的研究。只要是创新的研究就具有不确定性,重点发展的领域应该向新的有风险的方向倾斜,鼓励创新,允许失败,营造勇攀能源科技高峰的氛围,使得少数创新的研究成果脱颖而出。

  (3)始终保持系统布局。能源科学的综合性和交叉性特点要求各学科领域的协调发展,在重要的学科领域不能有空白,因此我们应该始终将系统布局作为一项工作目标,在一些欠发达的领域要保持持续的支持和有计划的扶持。

  (4)把能力建设作为重中之重。基础研究能力是创新的基础,而人才、设施条件和机制体制是能力的载体。我们应该注重能源专业人才梯队的建设,培育集中的设施领先的能源科学重大研究设施和研究中心,建设开放共享的管理机制,切实提高能源科学技术的研究能力。

  (5)鼓励面向应用的集成研究。能源基础研究成果的转化也体现出很强的综合性,因此要提高集成创新的能力,鼓励面向应用的交叉研究,促进能源科学研究成果尽快地应用于生产实践,促进技术装备的进步和工艺水平的提高。

  (6)注重扶持具有特色的研究。对一些具有地域特点、资源特点的研究要注意扶持,对于与特定条件密切相关的分布式能源利用、转化、传输的研究,应该重点支持,稳定队伍,争取在一些特色方向上有所创新。

  根据以上遴选原则,分析确定了工程热物理学科近中期的重要研究方向,主要包括:

  (1)节能减排,提高能效领域。主要包括高能耗行业节能,工业节能与污染物控制,建筑节能,交通运输节能,新型节能技术等方面。

  (2)煤与化石能源领域。主要包括洁净煤能源利用与转换,清洁石油资源化工与能源转化利用,燃油动力节约与洁净转换,分布式能源系统等方面。

  (3)可再生能源与新能源领域。包括太阳能,风能,生物质能,氢能,水能,海洋能,地热,核能,可再生能源储存、转换与多能互补系统等方面。

  (4)温室气体控制与无碳-低碳能源系统领域。包括:能源动力系统的减排科学与技术,无碳-低碳能源系统的科技,低碳能源化工与工业,低碳型生态工业系统等方面。

Engineering Thermophysics

   13.1 A sustainable energy system

  The reform of the energy production and consumption patterns triggered by the third industrial revolution, offers new opportunities and challenges to the discipline development. It is China’s research frontier in the disciplines of engineering thermophysics to establish the energy, resources and environment integration of sustainable energy systems, and to coordinate energy development and utilization of resources. These research interests include: (1) Clean utilization of traditional fossil fuels, implement efficient and cleaner use of fossil fuels, and actively explore sustainable development of green energy technologies and systems with pollution-free or zero-emission; (2) Accelerate the development of green energy, including the development and application of renewable energy and clean energy in nature, such as hydropower, nuclear power with massive industrialization value, and the need to develop wind, solar and biomass energy; (3) Realize the integration of energy, resources and environment, by pioneering new ways of chemical energy use or release to explore an effective way to separate pollutants from the chemical energy in the process of transfer and release, enabling the effective utilization of chemical energy and pollutants recovery. Achieve a new resource, energy and environmentally compatible development models by getting rid of the traditional “chain-line” mode.

  13.2 Energy-saving and scientific energy efficiency

  Energy-saving can be divided into “save” and “scientific energy efficiency”. Scientific energy efficiency emphasizes on relying on science and technology to achieve energy-saving and improving the energy efficiency, designed to comprehensively and effectively promote the development of circular economy. It is the fundamental way to save energy and the inevitable result of the energy technology.

  “Scientific energy efficiency” mainly includes three meanings: the first is by “allocation properly, requirement distribution, and temperature counterpart, and cascade energy use” way, constantly improving energy and the various resources comprehensive utilization efficiency, reducing environment resources cost; the second is by resolving energy and environment coordination compatible problem, closely combination energy conversion process together with the material conversion process, special focus on control the formation, migration and conversion of the waste and pollutants, organic combination of the energy conversion process together with the separation pollutants process, reducing and even avoiding the additional energy consumption during the separation process, implementation of the separation, and recovery of the pollutants during the energy use; the third is to change the traditional patterns of energy use, developing the resources, energy, environmental integration mode, achieving the resource recycling, minimizing the “waste ” and “waste energy”.

  13.3 The cleaner use of fossil fuels

  Clean use of coal is most prominent in China. You must open up a new type of high efficiency, clean coal utilization technologies. At present the clean coal power generation technology is built around the main development direction of coal-fired combined-cycle (CFCC). CFCC is an advanced coal-fired combined cycle power generation system formed by combination of the transformation of clean coal or coal technologies and efficient combined-cycle. Among them, the integrated gasification combined cycle (IGCC) has completed a number of demonstration projects and trial operation successful, verifying the technical feasibility, making the IGCC from technical validation phase to the business application. On the basis of IGCC, another important direction of clean coal technology development is chemical-powered cogeneration systems. Chemical-powered cogeneration system refers to the chemical process through system integration and power systems coupled together organically. It is a versatile, comprehensive energy utilization system upon completion of the energy conversion such as power generation, heating, at the same time, the production of alternative fuel or chemical products, to meet the energy, chemicals and the environment requirements.

  13.4 Renewable energy

  China’s solar, wind and biomass energy resource is very rich, with substantial favourable conditions for development. Large-scale renewable energy technology and industrial development should be an important measure for China’s transition to a sustainable energy system.

  In the area of hydropower development, in 2010, the total installed capacity of hydropower reached 216.06 million-kilowatt and electricity 686.736 billion kWh, accounting for 16.2 of national output.

  In terms of wind energy, in the end of 2010 the total installed capacity of wind power 31 million-kilowatt, during the “Eleven-Five”, the annual growth rate of 89.8 percent. The generating capacity is 49.4 billion-kilowatt-hours, 1.2 percent of national electricity production. The Grid-connected sizes ranks second in the world’s.

  The total amount of solar thermal utilization has been a world leader, the national scale photovoltaic power generation machine reached 800,000-kilowatt in 2010, installed with 168 million square meters of solar water heaters; in addition, solar air conditioning, solar cookers, solar architecture, has also developed into industry scales and is booming. China has a completed demonstration of solar thermal power technology.

  As for Bio-energy, the widening scope of the application of biogas in China, the technologies get breakthroughs to produce liquid fuel from biomass such as cassava, sweet sorghum grain. Thousands of tons of straw cellulose ethanol are in the pilot stage of industrialization demonstration project. By the end of 2010, various types of biomass power generation capacity is around 5.5 million-kilowatt. It has already achieved preliminary results in the countryside in clean use of energy.

  Geothermal energy and marine energy use technology is continue developing. The shallow layer geothermal energy used in building areas is of fast development. At the end of 2010, source hot pump heating refrigeration area had reached 140 million square meters. The tidal utilization technology is more and more mature. The wave energy, trend energy technology research and development as well as small scale application have made progress. The development and utilization work is in a starting stage. It has great potential in the future, with much better technology reserve.

  13.5 Greenhouse gas control strategy

  China needs new idea and new technologies for greenhouse gas control to satisfy the economic development and its energy structure.

  The strategic planning to reduce CO2 emissions needs carrying out in stages. The recent objectives are to improve the energy efficiency by “shut-downing and recapping” to eliminate backward productive forces, and to develop and promote the energy-saving technologies. The medium and long term objectives are focused on renewable energy and other green alternatives. The future objective is to develop CO2 control emissions integrated system.

  The integration ideas refer to that in the West such as resources-rich area construction recovered CO2 alternative fuel-power co-production system. It will transfer coal in Hang Hau into power, F-T fuel or methanol, and DME and alternative fuels. At the same time most of the CO2 will be separated and recovered and in-place buried. The power and alternative fuel can be transported to the economic developed area with big energy demand. In the economic developed area, alternative fuel can be used as traffic transport fuel and advanced clean power generation system fuel.

  This approach conforms particularity to China’s energy structure that “rich in coal, relative shortage of oil and natural gas resources”, resource distribution that “energy base is relatively concentrated, consumer terminal relatively fragmented”,, and status quo that “between the East-West economic development existing a big gap”, The greenhouse gas control technique is suited to China’s national conditions.