学科发展研究(2012-2013)分述
基础农学
2014年04月01日

  一、引言

  农业与粮食安全、生态安全、经济社会发展关系重大,作为战略性基础产业,农业的快速健康发展是国民经济持续、稳定和协调发展的重要保证。在“四化同步”、创新驱动发展的新时期,农业科技对农业增长的贡献率已超过50%,而基础农学学科发展又是农业科技进步和创新的原动力,在发展现代农业、建设中国特色农业现代化中的重要作用日益凸显,为保障粮食安全、农产品的有效供给和实现农业可持续发展奠定了科学基础。2012年中央“一号”文件指出要“把农业科技摆在更加突出位置”,进一步明确了农业科技发展的战略定位,指出“农业科技的创新重点包括稳定支持基础性、前沿性、公益性科技研究”,包括“大力加强农业基础研究,突破一批重大理论和方法”,“加快推进前沿技术研究,抢占现代农业科技制高点”,为农业科学研究驱动创新发展指明了方向。

  基础农学学科是认识与农业有关的自然现象、揭示农业客观规律及其原理,研究农业生产体系中的自然现象及其现象本质的学科。其目的是为充分开发利用和保护农业自然资源,协调作物与环境之间的关系,防止有害生物和不良环境对农业的破坏,以期获得农业生产的最佳组合,提高农产品的产量和品质及其生产效率,促进高产、优质、高效、生态、安全农业的发展,有效保障国家食物安全、生态安全,持续增加农民收入,提高农产品的国际竞争力。

  基础农学学科概念是一个综合、动态、发展的概念,随着经济和科学技术的快速发展,在不同历史时期有着不同的内涵。人类生产、生活实践,催生了基础农学的形成与发展。进入19世纪,受物理学、化学、地学、生物学等基础科学的影响,特别是受现代生物技术、信息技术的影响,基础农学及其相关分支领域得到了迅速发展,已跨入现代科学的行列。20世纪90年代以后,随着现代科学技术的迅猛发展,特别是数、理、化、天、地、生等基础科学对农业科学的渗透,以及物联网、云计算技术等信息技术手段的应用,基础农学学科出现了新特点、新趋势。进入21世纪以来,随着新一轮科技革命和产业变革的孕育兴起,一些重要科学问题和关键技术、核心技术呈现出革命性突破的先兆,带动了现代科学技术交叉融合、综合发展,变革突破的能量正在不断积累,成为推动基础农学创新发展的强大潜力。一方面,基础科学对农业基础研究的推动日趋明显,不断产生新的边缘学科、交叉学科和综合学科,带动了基础农学学科的快速进展;另一方面,基础农学研究与农业科技和生产结合越来越密切,正在走向一体化、集成化和综合化,加速了新兴产业升级。

  基础农学研究向微观和宏观两个方向发展,既结合又促进,加快了科研进展与突破;基础农学研究借助现代实验工具和理论方法,实现了试验研究手段的现代化;基础农学研究国际间竞争与合作、交流与限制并存,形成了十分复杂的态势。随着基础农学研究驱动创新发展及其成果转移、转化与推广,必将在新一轮的科技革命浪潮中为解决全球人口高峰期的食物安全问题做出重要贡献。

  二、本学科近两年最新研究进展

  《2012-2013年基础农学学科发展报告》(以下简称“报告”)是在2006-2007、2008-2009和2010-2011年三轮基础农学学科发展研究的基础上形成的,是近年来基础农学学科发展研究进展与成果的综合体现。持续开展三轮基础农学学科发展研究,一方面表明了基础农学在我国农业科技中具有基础性、创新性、前瞻性的重要作用,反映了基础农学学科发展研究倍受重视、学术活跃和快速发展的状况;另一方面,也表明了基础农学学科发展研究内涵丰富与博大精深,需要我们不断地去研究、探索和创新。本报告根据基础农学学科及其分支学科(领域)的进展以及未来发展的引领作用,确定了作物遗传育种、农业土壤、植物营养、农田灌溉与排水、作物病虫害、作物栽培、耕作学与农作制度、农产品加工与保鲜、农产品质量安全、农业信息、农业环境、农业资源与区划等12个分支学科(领域)进行专题研究,基本覆盖了基础农学主要分支学科(领域),强化了研究广度和深度。从2006-2007、2008-2009、2010-2011以及2012-2013这四个年度的基础农学学科发展研究来看,随着农业科技和基础农学分支学科(领域)的发展变化,选择的专题在深度和广度上也随之有所调整。其中,作物遗传育种、植物营养、农业信息、农业环境、农业资源与区划等是较为活跃、进展快、急待加强研究的分支学科(领域);而农产品加工与保鲜、农产品质量安全、农业土壤等是当前城乡居民和全社会广泛关注的热点、难点和焦点问题;农田灌溉排水、作物栽培、作物病虫害防治、耕作学与农作制度等既是传统的研究领域,也是一个持续的科研方向,在新的历史时期赋予了新的内容、新的使命。

  (一) 作物遗传育种研究领域

  作物遗传育种是当代农业科学发展的前沿学科之一,是基础农学研究的核心和重要组成部分。近年来,作物遗传育种研究取得了重要进展,我国水稻杂交优势利用一直处于国际领先地位,并不断取得新的突破。超级稻育种形成了以“理想株型塑造与籼粳亚种间杂种优势利用相结合”的超级稻育种的理论和方法。光(温)敏核不育基因、广亲和基因的发现和利用是超级稻育种取得成功的重要因素,我国科学家发现的水稻光(温)敏核不育基因可使杂交水稻免除保持系,使杂交水稻由“三系法”发展为“二系法”,不仅简化繁种制种程序、降低杂交种子生产成本,而且两系杂交稻的配组较自由,选配到优良组合的机率提高。从分子标记-生化标记-籽粒和面粉性状-食品加工品质四个层次首次创立了符合国际标准的中国小麦品种品质评价体系。发现小麦新基因和新标记26个,发掘并验证可用于育种的分子标记13个;育成优质小麦品种中优9507、中作8131-1和临汾5064,已成为全国优质麦育种的骨干亲本,以此作亲本育成的优质品种23个,累计推广1.8亿亩,2008年获得国家科技进步一等奖。矮败小麦及其高效育种方法的创建与应用,在国际上首创了将显性核不育基因Ms2与显性矮杆基因Rht10紧密连锁于4D染色体短臂的重组体,即矮败小麦特异种质资源。创建了基于矮败小麦的轮回选择技术,构建完成了矮败小麦高效育种平台和全国矮败小麦育种协作网。利用矮败小麦高效育种方法育成国家或省级审定新品种42个,累计推广1.85亿亩,2010年获得国家科技进步一等奖。广适高产优质大豆新品种中黄13的选育与应用研究,提出了不同纬度与遗传远缘的亲本杂交培育广适大豆的育种新方法,创建了广适高产大豆育种技术体系,培育出大豆新品种中黄13,实现了大豆育种新突破,2012年获国家科技进步一等奖;在棉花转基因优质纤维品种培育及材料创制方面获得突破,将拥有自主知识产权的来源于油菜FCA基因中编码RRM2结构域的cDNA片段构建了转基因载体,获得一批产量性状有明显改良T4代转基因棉花植株,其棉铃增大非常明显,平均单铃重较受体品种中棉所12最高增加49.9%。同时,转基因植株能显著增加棉纤维的长度和提高棉纤维强度。这个转基因材料已经通过农业部环境释放。研究绘制了二倍体棉花-雷蒙德氏棉的全基因组草图,创制出第二代优质纤维、优质大铃转基因棉花种质新材料,加快了优良棉花新品种的培育进程;创新了棉花黄萎病抗性鉴定和选择技术,创立了“六棱塑料钵定量注菌液”抗病性苗期鉴定技术,育成5个棉花新品种,实现了抗病、丰产、优质同步改良和突破。此外,在一些粮食、经济作物全基因组精细序列分析、基因组图谱构建等方面取得了重要进展。

  (二) 作物病虫害防治研究领域

  利用代谢组技术和基因干涉技术,并结合行为学测定,研究飞蝗两型转变调控机制,为控制蝗灾提供了理论依据。研究论文发表于2012年的《美国科学院院报》杂志上。与美国科学家合作,发现放牧活动会降低植物的含氮量,蝗虫取食这样的植物有利于蝗虫种群的生长和发育,从而导致草原蝗灾的形成,相关研究发表在2012年的Science杂志上。

  研究阐明了种植Bt作物对农业生态系统的显著生防功能。这是国际上首次从景观生态学尺度对Bt作物生态服务功能和机制进行系统研究,对发展利用Bt植物可持续控制重大害虫区域性灾变的理论与方法有重要科学意义。论文2012年发表于Nature杂志;深入研究发现棉铃虫田间种群对Bt棉花的抗性基因存在遗传多样性,首次发现并证实非隐性抗性基因在Bt作物抗性演化中具有关键性作用。该论文2008年发表于Science杂志封面文章;成功破译重大农业害虫小菜蛾基因组,完全拥有自主知识产权,宣告世界上首个鳞翅目昆虫原始类型基因组的完成,同时也是第一个世界性鳞翅目害虫的基因组。研究论文2013年发表在《自然•遗传学》杂志。

  小麦条锈病菌源基地综合治理技术研究取得重大创新,在大规模推广应用中防病增产效果极其显著。2009-2011年累计推广应用23067.2万亩,有效控制了条锈病的暴发流行,增收节支93.32亿元。该成果获2012年度国家科技进步一等奖。建立并优化了7种柑桔病毒类和检疫类病害的分子快速检测技术,创新了柑桔分子检测微量取样制备技术和柑桔茎尖脱毒微量快速评价技术。新建柑桔无病毒良种示范基地44万亩,实现企业和农民增收15351万元。该成果获2012年度国家科技进步二等奖。

  (三) 作物水调控技术与气候变化研究领域

  植物应答干旱胁迫的气孔调节机制研究,从提高植物水分利用效率的重大需求和植物抗旱生物学研究前沿出发,以提高作物水分利用效率为目标,研究作物干旱反应机理的相关重大科学问题,创造性地探讨植物干旱反应调节的基因表达分子机制,为基因工程技术提高植物的水分利用效率开辟了新途径。该成果获得2012年度国家自然科学二等奖。研制了智能化植物需水诊断平台,提出了都市灌溉型植物SPAC水分传输关系方法,揭示了灌溉型植物耗水规律及其与土壤水分环境的响应关系,明晰了灌溉型植物土壤水分-产量/品质-根冠发育交互作用机制,提出了滴灌土壤水氮调控技术与方法以及基于目标耗水量的农业用水管理方法,构建了设施农业水肥一体化高效节水技术集成模式、果园智能化精量灌溉技术集成模式和都市绿地“清水零消耗”生态节水技术集成模式。获2012年度国家科技进步二等奖。

  干旱内陆河流域生态的水资源配置理论与调控技术及其应用研究,以黑河下游的民勤县为基地,系统研究了干旱区内陆河流域水资源循环规律、作物需水过程及调控技术、生态植被需水及演变规律,在考虑区域生态用水需求的基础上,以保证区域农业可持续发展为目标,提出了有限水资源的合理配置理论及调控技术,并在生产实践中取得了显著节水、增效、促生态的作用,2013年获国家科技进步二等奖。

  全球气候变化规律和观测技术研究,揭示了全球气候变化对我国农业及产量的影响,中国高纬度地区作物生育期延长,喜温作物界限北移,作物种植结构发生了调整。与20世纪60年代相比,中国东北地区的生长期增加了10天左右。东北地区增温已使冬小麦的种植北界北移西延,水稻种植面积大幅增加,其种植北界已移至约北纬52度。玉米晚熟品种种植区域向北推移了约4个纬度,双季稻栽培已经由北纬28度北移至北纬30度。全国复种指数由1980年的109.4%增加到2006年的128.9%l。模拟预测结果,如果不采取适应性措施,未来气候变化将导致中国水稻、玉米和小麦等主要粮食作物的减产。2050年,若不考虑二氧化碳的肥效作用,则粮食总产量最大可下降20%左右,若考虑二氧化碳肥效作用,粮食总产量最大下降5%。在未来气候变化的背景下,水资源因素将成为粮食总产量提高的最主要限制因子。

  (四)农业信息研究领域

  近年来,农产品市场监测预警理论、方法、技术、设备、系统等方面取得了突破性进展,包括:初步构建了覆盖多品种、多市场、多区域的“中国农产品监测预警系统”(简称“CAMES”);制定并实施了《农产品全息市场信息采集规范》和《农产品市场信息分类与计算机编码》两个行业标准;开发了便携式农产品全息市场信息采集器(简称“农信采”),为我国农产品市场信息采集和监测预警工作带来革命性的变化。首次建立了农作物信息天(遥感)地(地面)网(无线传感网)一体化获取技术,在国内率先研制了面向农作物遥感监测的光谱响应诊断技术,创建了多源多尺度农作物遥感监测技术体系,制订了系列标准规范,建成了国内首个唯一稳定运行超过10年的国家农作物遥感监测系统。创造性地提出农业物联网的“三全”发展理念,即“全要素、全系统、全过程”的系统论观点;在上海、江苏等地建立了“智慧农业综合应用示范区”,自主研发了“田间环境综合感知站”,实现水稻全产业链的智慧生产和管理;天津市集成示范物联网感知、传输、决策及应用相关技术和设备,形成农业物联网应用技术体系,探索农业物联网建设模式和高效试验机制;安徽省以大宗农作物“四情”(苗情、墒情、病虫情、灾情)监测服务为重点,通过物联网技术的集成应用实现了大田作物全生育期动态监测预警和生产调度。

  三、本学科发展趋势和展望

  目前,随着我国基础农学学科及分支学科(领域)的快速发展,已初步形成了门类比较齐全的学科体系,并产生了相关的新理论、新方法、新技术,涌现出一些新思路、新观点、新亮点,在一些领域接近或达到世界先进水平。但是,从基础农学学科研究整体水平来看,我国同欧美发达国家比较还有较大差距。

  面向未来,我国基础农学学科成现出新的快速驱动创新发展之势,其主要表现:作为社会基础性、公益性事业,国家公共财政投入大幅增加;微观与宏观研究结合,加快了科研进展与新的突破;现代生物技术、信息化技术等将成为现代农业新的生长点;研究成果转移、转化与推广速度明显提升,推动现代农业可持续发展;国际间的合作与交流进一步得到加强等。

  我们要以科学发展观为指导,在“自主创新,重点跨越,支撑发展,引领未来”方针指引下,通过深化科研体制改革,培养精干、高效的创新队伍,加快重点实验室和基地平台建设,积极推进国际间双边和多边的交流与合作,创造有利于基础农学研究持续稳定发展的社会环境等政策措施,实现跨越式发展,为我国现代农业和社会主义新农村建设奠定坚实的技术基础。

  Basic Agronomy
 

  Agriculture, as a strategic industry, has played an important role in food security, resource and environmental safety, and social development. The healthy agricultural development is also an important safety guarantee to sustainable, stable and coordinated development. In the era of the sync of “Four modernizations” and innovation-driven, the contribution of agricultural science and technology to agricultural growth has reached more than half. The development of basic agronomy discipline is the driver of the progress of agricultural scientific and technology, and its role in the agricultural modernization with Chinese characteristics is prominent, providing scientific foundation to improve people’s livelihood and achieving sustainable development. The No.1 Central Document issued by the Central Committee focused on “SANNONG” (farmer, rural and agricultural) issues for 10 consecutive years, of which in 2012 stressed that “to put agricultural science and technology to a more prominent position”, and further defined the strategy of agricultural science and technology development, underlining that “the highlights of agricultural science and technology innovation include the stable supports for the basic, pioneering and non-profit science and technology research”, and clarified the key tasks of agricultural science and technology innovation, including “to strengthen basic agricultural research, and to make breakthroughs in a number of major theories and methods” “to accelerate the research of cutting-edge technology, and to take up the high points in modern agricultural science and technology”.

  Basic agronomy is the subject for understanding natural phenomena related to agriculture, revealing objective laws and principles of agriculture, and researching natural phenomena and its nature in agricultural production systems. The research aims at fully developing and protecting agricultural native resources, coordinating the relationship between crops and environment, preventing pest and poor environment from damaging agriculture sector, in order to obtain the best combination of agricultural production, to enhance the yield and quality of farm products, to accelerate the development of high-yield, high quality, efficient, eco-friendly, and safe agriculture, to effectively ensure national food security and ecological security, to increase the income of farmers, and to improve the international competitiveness of farm products.

  The subject of basic agronomy is characterized by integration, dynamics, and development. With the development of economy and technology, it has various connotations in different historical periods. In the new era, with the gestation of a new round of science revolution and industrial revolution, some important scientific problems and the core technologies have presented a revolutionary breakthrough harbinger, which have driven the key scientific and technological to cross and fusion and to leap in groups. The energy of breakthrough innovation is accumulated, which is going to be the strong potential to promote the development of basic agronomy.

  According to the overall plan of China Association for Science and Technology, the basic agronomy project development 2012-2013 has been researched by Chinese Association of Agricultural Science Societies in purpose of changing the way of agricultural development, developing modern agriculture, and building agricultural modernization with Chinese characteristics. The research project consists of 12 subjects, including crop genetics and breeding, crop cultivation, plant nutrition, cropping system & soil management, agricultural soil science, agricultural storage & processing technology, agricultural entomology & plant pathology, agro-product quality & safety, agricultural resources & regional planning, agricultural information science, agricultural environmental science and irrigation & drainage technology. The research project analyzes recent progresses, significant achievements, and applications in basic agronomy and its branches, grasps status and the development of the subject, compares the research and its application in China with the whole world, estimates the strategic needs and trends of the subject, and puts forward the policy suggestions to accelerate the development of basic agronomy.

  In recent years, the construction of basic agronomy has been paid much attention in China, and great achievements have been made in the research and its application of basic agronomy.

  In the field of crop genetics and breeding, the crop high-yielding and fine quality breeding, germplasm innovation, biotechnology applications and genomic research have made significant progress in 2012-2013, which made the production potential increasing and that the research and application of the genomic resource exploration and the disease-resistant / quality molecular breeding both have been developing at a rapid speed. The super rice breeding theory and method of “combined ideal plant type shaping and Indica / Japonica inter-subspecific heterosis” have formed and a group of flagship species has cultivated. Rice plant height and flower organs epigenetic genetic regulation research has made significant progress, which laid the foundation for further study in mechanism of epigenetic modification on rice development regulating. Sequenced and assembled the draft genome of diploid cotton Gossypium raimondii, created a second generation of super quality fiber and high quality big-boll transgenic cotton germplasm. Innovated the resistance identification and selection technology of cotton verticillium wilt, and developed a new seedling disease resistance identification technique, have bred five new varieties of cotton, achieved disease resistance, high yield and high quality sync improvements and breakthroughs. Participated in and completed the genome sequence fined analysis of cultivated tomato. Finished the cucumber genome atlas laid the foundation for the genome-wide “breeding by design”. The world’s largest tobacco mutant library and screening method have been built.

  In the field of plant protection, agricultural entomology has made significant progress. By using the metabolomics technology and genetic interference technology, combined with behavioral assays, the regulatory mechanism of migratory locust two-type-transformation was found, which provides a theoretical basis for locusts plague control and a good animal model for human metabolic disease study. Systematic study clarified planting Bt crops has significantly biocontrol function on agricultural ecosystems, which is the first time in the world to study the Bt crop ecosystem services and mechanisms from the landscape ecology scale, and has important scientific significance in developing the theory and method of Sustainable control of major insects regional catastrophe by using Bt plants. Discovering that the genetic diversity of the resistant genes of cotton bollworm field populations to Bt cotton exists, and for the first time, discovering and confirming the non-recessive resistance gene has a key role in the resistance evolution of Bt crops. Successfully decoding the genome of the major agricultural insects plutella xylostella with independent intellectual property rights completely, first declared to the world’s that primitive Lepidoptera genome completed. In the field of plant pathology, significant innovations have been made in the comprehensive management technology of wheat stripe rust pathogen. These innovations have been applied in the large-scale and achieved significant impacts in controlling disease and ensuring production. During 2009-2011, accumulated application area reached 230.672 million mu, effectively bringing the stripe rust outbreaks under control, and increasing revenue / saving expenditure of 9.332 billion yuan. The new fungicide for wheat scaboriginal control, JS399-19, was developed, which is the best fungicide for both preventing wheat Fusarium Head Blight and reducing fungus toxin contamination. Temperature control of rice seed pregermination and the farming operation techniques during pregermination to grin has been registered 8 national new products / varieties, with accumulated application of 5.1 million, preventing grain losses of 16.45 million tons, and increasing social benefits of 12.8 billion yuan, of which 3.12 billion yuan have been accrued in the last three years. 7 kinds of citrus viral diseases and quarantine category rapid molecular detection techniques have been established and optimized, and 440,000 mu of demonstration bases for the new virus-free citrus seed has been developed, increasing 153.51 million yuan for enterprises and farmers.

  Technology on crop water requirement and control has made significant progress. In the field of stomatal regulation mechanism on drought-affected crop, the molecular gene expression mechanism of drought-affected plant’s response modifier has been developed creatively, proceeding from the significant demand for enhancing plant water-use efficiency, as well as the biological research frontier of drought-tolerance plant, which has also opened up new avenues in the area of improving crop water-use efficiency via genetic engineering technology. In the field of the principles and integrated technology of high-efficient water use in urban modern agriculture, intelligent diagnostic platform for water requirements has been developed. Technology and methodology of soil water and nitrogen through drip irrigation, as well as water use management methods based on water consumption target, have been proposed. Three water-saving technical integration models have been constructed: high efficient water saving of water and fertilizer integration in agricultural facilities; intelligent precision irrigation in orchards; ecological water saving in metropolitan Greenfield. In the field of “water resources allocation and control technique in dry inland river basin considering ecological theory and its applications”, a theory of rational allocation of limited water resources and control technology has been put forward, playing a significant role in conserving water, improving efficiency, and promoting ecological effect.

  Critical technological advances have been achieved in the discipline of Agricultural Information. In the field of agricultural monitoring and early-warning: Agricultural Information Analytics has been gradually improved; China Agricultural Monitoring and Early-warning System (CAMES) has been preliminary constructed; 2 national industrial standards have been drafted and implemented; and Portable Agricultural Product Holographic Market Information Terminal (Agricultural Information Collector) has been developed. In the field of Internet of Things (IOT) in agriculture, China has achieved critical technological advances in various areas of IOT in agriculture, such as agricultural sensors, RFID, data acquisition and transmission, data-based decision-making and management, application of IOT, and has nudged into the world’s leading country. Major research achievements include: establishing nearly 300,000 mu of the “Comprehensive Application and Demonstration Zone in Wisdom Agriculture”; developing technical system of the application of IOT in agriculture, which integrating relevant technology and equipments with respect to sensors, transmission, decision-making and application; fulfilling monitoring / early-warning and production scheduling of the whole growth period of field crops via IOT technology, mainly focusing on the situation of seedling, soil moisture, pest and disaster. In the field of intelligent information services in agriculture, breakthroughs have been made in some key technologies, including specification on agricultural information acquisition, intelligent processing and personalized precise services.

  At present, the branches of the discipline of basic agronomy in China have developed gradually, forming a relatively complete system of academic disciplines. Breakthroughs have been achieved, new theories, methods and technologies have been produced, new ideas and insights have emerged, and some subjects are close to or have reached the advanced world level. However, since the subjects of basic agronomy in China have started late, and their development has lagged behind, there is still a wide gap between them and those in developed countries. By means of following the “being independent in innovation, focusing on spanning, sustaining development, and taking lead in the future” requirements, we must closely relate to the reality of our agriculture, rural areas and peasants, fully understand the basis for the development of the strategic needs of agriculture, and accelerate the reform and development. We must also improve the institutional mechanisms, increase investment efforts, and strengthen international exchanges and cooperation. What’s more, we should train men of abilities, organize prudent and efficient research teams, choose international frontier of basic and advantageous subjects, key areas with overall focuses which affect the national economy, the “three rural” and theoretical and technical issues, in order to develop by leaps and bounds, and lay a solid technical foundation for the development of modern agriculture.